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FOREWARD

This paper was presented at the AIAA 18th Aerospace Sciences

Meeting, held at Pasadena, California on January 14-16, 1980. The

text has appeared as a preprint AIAA-80-0342. Since reprints of the

work are unavailable, the paper, with up-dated errata sheets included,
is distributed here as a University of Southern California School of
Engineering, Department of Aerospace Engineering Report, USCAE 138.

The work presents a comparison of analyses based on the asymptotic
theory for high aspect ratio wings with corresponding results from a
3-D full-potential computer code (FLO 22) for oblique wings as well as
a more conventional swept wing involving ‘\83\5\3 suberibicol and s\ightly supercritical
component flows.

The paper also gives a survey and critique of the relatively recent
developments in the 1ifting-line theory. The material presented obvi-
ously cannot be accomodated by the length of a single standard journal
article; various parts of this work are not expected to reach journal
publication stage for some time. The distribution of this report should'

therefore serve a useful purpose.
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"TRANSONIC SWEPT-WING ANALYSES USING ASYMPTOTIC
AND OTHER NUMERICAL METHODS'

(AIAA Paper 80-0342)

H.K. Cheng, S.Y. Meng, R. Chow and R. Smith

Page 1, left column, 17th line in Abstract, change '"'swept-forward-wing' to
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and ''conven-''.

Page 1, right column 4th line from the bottom, change ‘'analysis'' to
Yanalyses''.

Page 2, left column, Eq. (2.1), change “Mn” to “MGD'R

Page 2, left column, i4th line from the bottom, replace "that' with "the
scale',
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Page 2, right column, end of second paragraph, change
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Hadmit'',

)
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“existence'.
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Page 11, left column, 7th line from the top, change ''vorticities' to
“vorticity'.
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Page 13, left column, 2nd line from the end of § 5, change “is' to 'based'.
Page 13, left column, 30th line from the top, delete "is'.

Page 13, left column, 22nd line from the bottom, change ''vorticities' to
Yyorticity'.

Page 13, right column, 5th line from the bottom, correct the author's name
to read ''Klichemann''.

!

Page 13, right column, Reference 1: change '""Buseman' to “Busemann''; write
"Uberschallgesch Windigkeit' as a single word.

Page 13, right column, Reference 4: change ''Kucheman' to ''Kuchemann'.

Page 14, left column, Reference lha: change ''to appear in...." to "Journal
of Fluid Mechanics', Vol. 97, pt. 3, 1980, pp. 531-556".

Page 14, left column, Reference 19: write "Traflugel Theorie' as a single
word.

Page 14, right coiumn, Reference 28: change "Weisinger' to 'Weissinger'.
Page 15, right column, Reference 55: delete "'and' from the 3rd line.

Page 15, right column, Reference 57: make the first letters in '"Senkrechten',
“Einer'', and "Gekrummten' lower case.

Page 15, right column, the Caption of Fig. 1, 3rd line from the bottom, change
"swept-wing'' to '"swept-wings''.

Page 16, the Caption of Fig. 7, change '"D" to lower 'd'.




ASYMPTOTIC AND OTHER

Los Angeles,

ABSTRACT

Asymptotic theories for high-aspect-ratio _ __
wings in transonic flow developed recently for
straight unyawed wings and for oblique wings show
that the three-dimensionatl {3-D) mixed-flow calcu-
lations may be reduced to solving a set of 2-D
problems at each span station. For wings with
surfaces generated from 3 single airfoil shape,
local similutude exists In the 3-D flow structure,
permitting the problems to be solved once for all
span stations. This paper reviews this theoretical
development and the related computational studies.
The essential elements in the theory will be identi
fied, their roles are explained; their relationship
to the lifting=1ine theory and related classical
nethods are discussed. Differences among the
pivoted (oblique) wing, the swept-back wing and the
swept-forward-wing in the induced upwash are brought
out. Examples of similarity solutions are demon-
strated for high subcritical and slightly super~
critical component flows; comparisons with
relaxation solutions to a fu!l potential equation
are made. The examples include both obligue and
symmetric swept wings, the study alsc examine the
adequacy of the existing full-potential computer
code. Outstanding problems remsining for subse-
quent development are discussed.

1. INTRODUCTION

Our sound understanding in the serodynamics of
wing sweep, and its use to control the compressipjp
ity effect, has been limited in the past mostly to .
problems in the linear flow regimes{!~5) Recent
interest in aircraft wing design has focused on the
potentiality for adopting, or modifying, two-
dimensional (2-D) supercritical airfoil data for
3-D applications. (6=1]) The_ flow problem in this
domain is necessarily nonlinear with a transonic
component flow. In this paper, we review theore~
tical and numerical studies on high-aspect-ratio
swept wings for this type of flow, including

- NSLY recent works. .
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" 7In the domain of interest, the ‘low field far
from the wing section should pertain to a high sub-
sonic, or linear sonic, outer flow, which is
representable._in the leading aporoximation by a
solution to the Prandti-Glaue~t equation corresponc-
ing to a swept lifting line (cf. 7"“8"" in Fig. 1.
Thus, the theorstical treatments{12-18) mencioned
must fi roots in Prandtl's original lifting=-line
idea(19), even though the corresponding inner prc-
blem to be solved is basically nonlinear and may
involve an imbedded supersonic reaion. Apart ‘-om
gaining a better physical insight and a greater
simplicity in the swept-wing analysis, the aporoacn
represented by Refs. 12-18 reflects a desire for
lmplm?ting fhc current computer-oriented 3-D
methods (20-26)which, though being very powerful,
share the common problem of trading aczuracy witn
computer cost and storage reduirements, as is we!l
known. While the prospect of the next-generation
computers with o?zz?ually powerfui code develooment
1s wall in sight . thay csnnot directly answer
the question in the serodynamic theory: namely, in
what manner the 2-0 component flow on a swept wing
is approached, as the wing aspect ratio increases.
The least contribution, to which the approach may
lead, is providing an asymptotic basis on wnich tne
adequacy of the current 3-D codes (their algorithm
and some of their implicit assumptions) can be ex-
amined.

Detailed expositions of_the asymptotic threory
underiying this develcomentcan be founa in Refs.
13-18; the following will address more ful'y on
aspects of intersst to the asrodynamic understand-
ingsand on exemining its potentiality towards
developing less costly computation procedures for
asrodynamic design studies.

The following sectiom will axamine the esser-
tial elements of the theory, their roies in controi-
ling the induced upwash field and other solution
properties. The discussion will bring out & numoer
of serodynamic_features distinguishing obliaque

convens
tions! swept winas; the delineation will maxe the
distinctions from classical 1ifting-line anslyses
apparent. An exposition of the reduced probliem of
determinTng the 3-D correction for the (inner) tran-
sonic component flow is given in section 3 wnere
some of the subtle differances among Refs. 13-18
will be noted, and the local similarity in the 3-C
flow structure as wel! as an unsteady analogy are
explained. The features of s recent development
based on the full-potential equations wi'l also be
brought out. As in most asymptotic analysis o this

type, the theory breaks down loca:lv in a numper of
regions, of which the most important is perhaos the
vicinity of the apex of a swept wing where the
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center line has a slope discontinuity; these and
other limitations, as well as the fundemental
question of perturbing a supercritical shock-free
solution are examined in Section 4. Examples of
solutions are demons:rated and compared with the
full-potential resuits in Section 5, where some
limitation of the existing 3-D full-potential com-
puter codes and & clarification of their formula-
tion are also given.

2. THE ESSENTIAL FEATURES OF THE THEORY

The basic idea f;," in common with Prandt!'s
lifting=line thoory( for high-aspect-ratio wings,
lies In the consideration of two very distinct flow
regions: one is a nearly planar (2-0) region nat
20 the winq section with 3 streamwise length scale
comparable to the typical wing chord cg, and the
otner is a fully 3-0 domsin with its size compara-
ble to the wing haif-span,b. They are the "lns-or"
and the ‘'outer’ region, adopting Van Dyk.'s(”
terminology. S$inie the aspect ratio R824, is
high, the flow in the outer region sees the wing
and its near wake) as a line of singularity - the
lifting line - in the leading approximstion.

it may be clearer for the present exposition
to bdegin with the more familliar lifting=line solu-
tion for the outer region. It is also convenient
to write down here the definitions of the dimensior
tess inner and outer variables. For the outer
region, we will use the variables

efiomdov, jarn, fnsp,
; Ea19/a¥ Yo,

and for the inner region, we use the veriables
L/

f22:/a, $177p. ATIMLM8VG,,
$214/x70U,6.

In the acove, (x,y,2) is the right-handed Cartesian
coordinate system with the x-axis pointing in the
free stream dlrection and z-sxis in the lift direc-
tion; ~hereas (x',y',z2') is a right-handed ortnogo-
nal curvilinear coordinate system with z' = 2z and
y' = 0 being the center line of the wing planform
x ® xc(y), and x' is the distance from the center
iine measured In x-y plane fcf. Fig. 2). It is
sssumed that the reference center line i3 located
completely in the x=y plane, i.e. we are consider-
ing a planar-wing problem. Note that fas. (2.1)
are in effect the Prandt!-Glavert variadles, with
the scale for the perturoetion potential so chosen
:9 match that of the inner solution; and that Eqs.
{2.2) are siaply the set suggested by the transonic
similarity law for the component flow, using the
nalf referenca chord co/2 as the basic length scale
ana J, 8 U[,cosA a3 the component free-stream veloc
itv. Mere o, is @/m, with & being taken g
tvoical (aosolute) angle of attack, or the wing
seci 'on thickness. For all practical purposes, we
assume p and & delong to the same order. For
convenience in the sudsequent aiscussion sn the
*elated classical work, we ~i!! employ a dimension-
‘ess inner varisble 8’ as an alternative to the

3 in €. 72.2) nemel,

(2.1)

(2.2)

£'8a8%/c, (2.3

(X3

) smj\ﬂindm » ana A = W__f”‘m.

2.1 The induced Upwash Field

The perturbation velocity ootential (X, 7,%)
representing the combined system of the bound and
tralling vortices in the outer-flow region, satis-
fying the Prandt)-Glauert equation, is

!
. E[_Tui) -5 47
Ty ITETONT [~ R, ] % 2.0

-t L.
Re |@-rGalteg-nrtert|

The higher approximation of the outer solution

$ = ¢o * ‘l'so * e (2.5)
musc account for not only the finite asgect-ratio
effect as In Van Dyke's "ierd-grdlr" theory 27),
but also the nonlinearity!1%.18) aichough the tacter
will affect little the 3-D corrections to the sur-
face pressure of interest. For the type of center
lines considered beiow, we have sither RzBy or
Rp Al where Hetana/fi-m5 -

We point out that the roll-up tendency of the
trailing=vortex (TV) sheet far bahind the wing is
controlled by the trailing vortlclty‘:‘df/‘;, Thus,
for R, W1, the assumption of a flat TV sheet im-
plicit in Eq. (2.3) is seen to Be asymptotically
correct, as long as X = 0(1), irrespective of the
degree of nonlinearity in the inner ;!w reqion
(next to the wing section). Therefore, ttis assump-
tion will not preclude the proper anslysis of the
large deflection of the TV shest in the x'-2'plane
next to th’ wing section in a full-potential formu-
‘ation. (87

The most crucial knowledge from Eq. (2.4) is
the flow behavior in the vicinity of the lifting
line, i.e. R-Ro(§) w0 and 240, from which the
induced velocity, hence the incidence correction,
can be determined. For center lines invalving only
straight segments, the oehavior in question can be
written as

& ~ BER [ (T £7) » Fagei ]+

- RE i {f—ﬁ- (Lei§’l - ta2]-

# [ AR Fomt Joa L) &
where TIEM = (9) . and @'Eieil~} & . Nora

that the result has been expressed in the inner
variables X, ¥ and 2 to facilitate easy identi-
fication for subsequent aiscussions on the upwash
effect; the last term is independent of X and 2
with

in Z(y):-ﬁ% Ty [2ai ) 4 24+
w Lokt 1) o'Bl] » R'e7) la| g L2420 o

,[_’%M[a-mu,»m-h]dr., (2.90)

where F€ = 3 for a straight obiique wing (Rel§ ), _

4nd ‘”:‘(7)3[‘ Ty [ m (Iri=in) R
PR ) [t Cpin e oY
.gm].{,.(’,.,)]q, (2.6¢)
for a svmmezric swept wing ‘R MBA). in avove,

_—




Observe that P’z di}/é7 = sech aF,/d5.

The first term on the right of Eq. (2.6a) gives
the concentrated vortex representing the wing sec-
tion, the second group of terms proportional to
A (-m R ana 4T /47, absent in the
classical analyses, results from the non-vanishing
spanwise component of the near-wake vorticity.

This component of the vorticity induces a logarith-
mically infinite upwash at the center line, as may
be anticipated from a consideration of the local
irrotational 2-D flow (cf. Fig. 3). This_is re-
flected in the logarithmic dependence of on

the aspect ratio MR,. The terms in Eq. (2.6a) __ _

which can be identified with the proper incidence
correction (to the inner solution, after properly
matching the inner and the outer soiution) are

a' 4 1 SymdA dF

E/5.ge - L sl -éz..z) (2.7)

m- (z Z. v l-“\. l’
[The term with the factor (In 2) will not be pre-
sent if the basic length scales for x, etc. is
taken to be co instead of co]. The logarithmic
term in ¥ gives a significant contribution of
the near wake which s, in turn controlied by the
yaw. Similar (log d.)( E rms will rise from the
center(;yge curvature (or from a time-depend-
ent F. .

Two observations are essential in subsequent
discussions. First, the part of the induced upwash
field shown in Eq. (2.6a), which yaries with % and
z, consists of the concentrated vortex as wall as
the logarithmic behavior of the near wake; second,
since fog R, resulits from the logarithmic singu-
larity in the upwash, the logAR, term would have
been absent from the ir Eq. (2.6b) and expres-
sion (2.7) above, if the induced incidence correc-
tion were taken simply (and incorrectly) as the
finite part of the upwash field. In passing,
similar results have also bee? gfrlvqg for a
straight oblifoue wing by Cook!19), using Mellin
transformation techniques.

2.2 Related Classical Analyses

Among the earlier methods applying the 1ife-
ing-line idea to swept wings (see Ref. 3, 28-30 for
a thorough revlew%é ’h' most well known is perhaps
that ?5 Weisinger 8). as pointed out by Jones and
Cohen(3}, Weisinger's method does not recover
correctly the limit for the infinite aspect ratio.
We may recall! that in Weisinger's method, the
bound vortices at each wing section are represented
by a concentrated vortex at the 1/4 chord point and
the induced downwash (negative upwash) is computed
at the 3/4 chord point. Nevertheless,the fogarith-
mic dependence on R, mentioned should be found
also in solutions by the Weisinger method (applied
to high-aspect-ratio wings), since an upwash
formuls equivaient to Eq. (2.4) was used therein.
On the other hand, the use of the 3/h chord as an
upwash control point requires a uniform upwash, or
one varying linearly in x'; but this requiremant ~
"is not met by Eq. (2.6a). In addition, its valid-
ity also imply the assumption of a locai 2-0
component flow devoid of the near wake, which is
again contrary to Eq. (2.6a).” Its failure in the
high-sspect-rastio range, therefore, should not be
too surprising.

This comment doc? not spply directly to the
vortex-iattice mathod'\31.32)employing tne 3/4 chord

as & control point for sach lattice (panel). This
is because the large upwash and spenwise-vorticity

jump associated with the logarithmic singularity
- -gepend mainly on the vortex-shedding rate of tne

-—indtvidual lattice, whose contribution is made

mity, however, the third-order results of Ref. 37

smaller as the lattice number increases. [Error of
such a nature will nevertheless remain.]

Solutions to elliptic lifting surface at yaw
have been given early by Krienes in Ref. 33, where
solutions to the inverse lifting problem were
superimposea to determine 1ift and moments of a 5:°'
elliptic flat plate at vew (a helpful delineation 4
of Krienes' analysis in the unyawed case can be
found in Ref. 3 ). Of the five-term truncated
series used therein, three terms were symmetric
spanwise, it is not clear if the remaining terms
could adequately describe the asymmetric span load
of interest. Generalization of the lifting-line
theory for a wing with a curved center line, as well
as a wing in_side slip, has been considered by
Dorodnitsyn (3%) who noted the significance of the
logarithmically large upwash effect due to yaw.* j
However, the analysis involved t?ss?/h chord con-
trolled point, as in Weisinger's , and therefore
the 3-D effect analyzed cannot be expected tc be
asymptotically correct. The results were, in any
case, restricted to smal! departure from a straight,
unswept center line in the linear regime.

A ca{e Yf curved center line has been studiec
by Thurber 35) who considered a crescent-moon-snaped
wing from the viewpoint of an asymptotic theory;
however, the solutions for the region around the
wing section and the matching problem were not con-
sidered (the upwash calculation also contained
errors). Oscillating high-aspect~ratio wings withn
curved center |ines have been treated by the senior
author in Ref. 35, where the basic reasons fer

the appearance of a logarithmically large uowash are
explained.

2.3 The Asymptotic Approach and the Basic Featu-es
of the Theory

The works under review adopt the basic ap-
proach initiated by Van Dyke(27) who considered
Prandti's l1ifting=1ine theory as the leading
approximation in an asymptotic analysis for a hign-
aspect-ratlo wing. While this more formal approach
may break down near the tip of a rectangular or
taper wing {(where the asymptotic expansion is non-
uniform,as is quite weil known), the methods allow a
systematic improvement by successive approximations,
and a clearer delineation of the various competing
3=0 ef:ects. Thus Van Dyke is able to extend
Prandtl's work for a straight. unswept wing to a

higher order(38 . On account of the tip nonunifor-

does_not predict correctly the total 1ift and zrag;
there is, in addition, an error relatec to the Kutta
condition, to be discussed later.

An exsmple of the asymptotic amalysis of this
type, representing a significant departure from the
sssumption of a straight, unswept center line, is
given in Refs. 12 (a) and (b) for an oblique wing
in the framework of the linear theory of an incom-
pressible flow. This linear analysis snares the
same outer solution and the corresponding upwash
distridution }n the subsequent transonic obiique-
wing analyses'!3:1%) . The rather encouraging

5
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comparison with the more exact wing-panel method
given therein suggests that equal success may be
ob:?ined for the transonic swept-wing analy-
ses at least for the oblique wings*.
(i)
Aside frem the interesting dependence of the
induced upwash on the span leading r.(,) and on
the sweep angle A , to be delineated more fully
later, there are other features in the formulation,
which represent important departures from the
classical theory. One of these is the need for
considering the s spanwise component of the trailing
vorticity between the trailing edgo and the down-
stream infinity in the reduced inner problem. Such
a need is made avident by the flow behavior shown
in Eq. (2.6a) where the second term gives a Jump in
7¢./7‘ across the wing trace, being proportional
t0 - zamA R 'dFe /47 . This means that the locai
component flow cannot be determined by a simple in-
cidence correction to a wakeless 2-D component
flow as in Prandtl's original analysis. The solu-
tion presented for the straight oblique wing in
Refs. 12 (a) and (b) confirms the importance for
treating the vorticity “5"36’: the wing trace.
the more general cases( ’ the partial differ-
ential equation (PDE) governing the inner region
must also be corrected for the center-line curva-
ture and/or for a 3-D compressi 'th effects (see

below).

Departuyre from the classical analysis

in

One must observe that, as the component Mach
number M, approaches one (from below), the sweep
angle A must necessarily decrease toward zero
(unless Mo 1)
A will not diminish the importance of the
logarithmic upwash fleld associated with the span-
wise near-wake vorticity, but reduce at the same
time the spanwise component of the wake-vorticity
itsel7. For this reason, the velocity will remain
essentially continuous across the wing trace in the
inner problem for transonic swept wings.

(i)

The Kutta condition at the trailing edge plays
an important role in the present theory. While an
infinite (integrable) singularity in the 3-D cor-
rection to the surface speed could suggest only a
locai breakdown (nonuniform) of the asymptotic
solution near the trailing edge, it gives an
erroneous correction for the entire wing section.
This is because the latter represents an unwanted
eigen solution to the homogeneous boundary-value
Droblam, as is shown quite clearly by the explicit
inner solution in Refs. 12 for an oblique-wing.
Simidar problems appear for the unyawed straight
wing at the":nird order'whers the particular solu-
tion to the inner problem given originally in Refs.
27 and 37 violates the Kutta condition,as bging
Jncovered and corrected by Kida and myu

Kutta condition

According to Eq. (2.6a), a_smaller __

2.4 Behavior of the Induced Upwash on Swept Wings

-ibution in the

__The part of induced upwash gdistr

The scales in the span loadings shown in Fig. 3
of ef. 12(a) and in Figs. 4~6 of 2ef. 12(b)
are incorrect; they should all ve reduced by

a factor of 10.

form of 3 is dominated by the term -a-yr)"(:-n.‘)"{'
“SinA d T3 /47 Ln (S~ ™3 R,) which will_generally
reduce the downwash on an aft (or swept-back

wing ) panel where

dR /45 < © and augment the

downwash on the forward panel where 4P, /47 >0. For
most span loadings of interest, dl'/dy t%\ds to
infinity at the tip g s & | er (tey this, '

together with the_ logar!thm Involvlg‘g ,a'gf—l,g. ) i

and - j%)]eads to a maximum of ol R ) near the ;

tip of a swept-back panel. '
There is also a minimum in 3 Aear the

tlp on an swept-forward panel (where the downwash

reaches a magnitude of O(K-®)). Although the

magnitude of the induced velocity becomes infinite 5

at the tip, £ reverses its sign and vanishes at a ;

span statfon extremely close to the tips. This

tends to provide a reasonable description of the

span loading, in spite of the local breakdown at the

tip. The latter's region of nonuniformity is esti-

mated to be 7¢ | = Q(A2LA)

The asymmetrical span loadlng contributed by
terms proportional to - df, /4y in ¥ are respon-
ible for the unbalanced rolling moment of an
oblique (pivoted) wing , unless twist,wing bend,or
spocial pivot location is introduced in the de-
sign( +11),  The extent to which this asymmetry
depends on the yaw angle 4 and on the type of the
basic span loading f¢7) is illustrated in Fig.Ak
where the upwash functions ¥ (§) for oblique wings
with an elliptic and with an extended-span (ES)
distribution in ¥ (§) are shown for X =0, 72.5°
and 45°, These ¥’s° were computed from Eq. (2.6) _
with 2 (9) normalized by the mid-span value of !',
and the (reduced) aspect ratio taken to be such that

K secp = B.4. Ve note that the graphs can be
corrected for other aspect ratio by simply adding
to
A4 5:»/1.. A /
sf= 5 fod Frin| Bkl s

The ES load considered has a root-bending moment
equal to that of an elliptic load for the same
1ift but lesser drag The span however is
longer, hence the name ''extended span''. For the
ES distribution shown, the extended span is 1.15
times that of the elliptic one.

We note in passing that at _{ = 0, the ES
load induces a lineal distribution in the upwash,
equivalent to the effect of a wash-in, and the
asymmetry caused by the yaw wi urther increase
this effect on the downstream side, turning a
regular downwash into a (positive) upwash on the
aft-pane! tip. The amplification of the induced I
velocity in the out board region of each panel, and
the existence of a maximum and a minimum in the
manner discussed earlier, are quite apparent from
the figure.

The induced flow-angle correction will deperd
also on the center-line geometry. Fig. S shows the
span distribution of normalized ZOZ’. for sym-
metric swept-foward and swept-back wings, at Y
different degrees of sweep. It is assumed in the v
calculations that the span loading 1"(,) (based on
the strip theory) is elliptic, and the {reduced) "9
asoect ratio A, s [i-M3 &, is 9.26. Results for
five vatues of A (0, £22.5°,545°) are shown. At
Mg = 0.755, 1 = £ 22.5° and £ 45° corresponds to
+ 33.33°%, respectively. )

P e

e o

A ™ t15.2° and

The “amiliar fact acout the need for a wash-
out On a swept-back ~ing is auite evident from ine
large reduczion in ]f.fgl

near the tip shown.
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The usefulness of adopting a forward sweeo (A< 0)
in counteracting the apove effec: is also gquite
evident from Fig. 5.

For value of A&, other than 9.26, the cor-
rection to ¥ indicated in Eq. (2.19) again
applies. The behavior near the tip of a swept wing
is again similar to that observed earlier for the
oblique wing; but in approach the center corre-
sponding to the wing appex, the magnitude of the
induced upwash becomes unbounded. This divergence
is expected from S which, upon § -0, yields

T~ - Nto) 2o "‘“ . (2. 9)

This is well borne out in the 45° swept-back case,
for which the downwash near the center is more
severe than other cases shown. Unless f%(0) = 0,
the theory wi!l break down at ¥ = 0. Comparing
(2 +BS)X with the leading term in Eq. (2.6a),

in con_’unctlon with Eq. (2.9), reveals rudlly
that a complete break down occurs where (f-mz) a,

« R sinA To(p) /3 becomes of unit order, i.e.

at T

. sinA (o) :I
= O[('_M:M' (2.10)

This nonuniformity will be discussed further later
in the context of the nonlinear transonic flow.

In passing, we note that unlike the upwash on a
swept-back wing,.the X « F¢ near the apex
station of a swepi-forward wing does not become
excassively large until ¥ comes very close to the
origin. Thus, break down of the theory near y = 0
may be less severe for the swept-forward case.

3. TRANSONIC SWEPT WING: THE INNER PROBLEM

We consider h:gh subsonic flight near the
speed of sound. As is well known, the performance
of a transonic wing is [imitea by the rapid drag
rise as H‘-ol With a moderate sweep, howeyer. one_
carTBrmg the flight Mach number of a high aspect
ratio wing closer to one, while keeping the compo~
nent flow around the wing section at the verge of

the drag rise.

3.1 Basic Parameters and PDE

The basic component flow in this situation is
necessarily nonlinear and of a mixed (hyperbolic-
etliptic) type; the wing section Is sufficiently
thin, this component flow at each span station wil]
obviously be controlled by the transonic similarity
parameter based on the component Mach number
Mo = Ny CotA

o iM- 4
famnl?l; f[gT the transonic small~disturbance
theory ' V" On account of the stronger spatial
attenuation for disturbances in a 3-D flow field,
it is possible to match this predominately 2-D
nonlinear-inner flow with a basically linear outer
flow described earlier. As observed in ;i, the

K. = LM (3.1a)

swapt_angle A must be confined to a relatively nar-

ow range, because, if A is too smali, M, will
exceed the drag-rise value of the wing section, and
if A is too large, the M would become so far from
unity that the aovantage of a high pressure co-
efficient will be lost. The A range of interes:

- bance {T1s0) theory

e Kot

is that which will keep K, at the unit order, while
Me does not exceed one. Let

@g = (3.18)

The foregoing condition is then equivalent to the
requirement () = 0(1) Finally, there is a reduced
aspect ratio controlllng the 3=D influence, the
reciprocal of which is

€ "’M. .

Note that o R = (M K,) V'K . The asymptotic
analyses of Refs. 13- |8, including the unswept case,
pertain to )ghe limit €-=0, while keeping K, and

(also ™€ ) fixed. With the additional re-
quirement Mg< 1, the conditions on@ and K,
amount to

{3.1¢)

E')z < Ko = 00) (3.2)

When the center-line curvature is taken to be
zero locally, and the disturbance is assumed %o be
sufficiently weak, the PDE in the flow region next
to the wing under conditions just mentioned can be
obtained from an expanded form of the full potentia}
equation in the rotated coordinates (x',y',z’) as

(1=M2) by = dye: - 2Mmam by -

MU (e ML e 0, G13)

where the terms omitted (‘--) can be shown tc be
relatively smal! on the basis of the transonic
small-disturbance assumption [i.e. 1om!s 0™,
P=0(U ™), 2/ ¥ox = 1 : Oa™)],
Except for the third term, the equations shown 3bove
are  familiar frgm H:y transonic smali-distur-
The added term,
~2Mitana bury- results from a 3-D compressibility
correction ~o the velocity divergence (owing to the
spanwise variation of the density) anc wiil re-
main also in the linear regime, unless M, or
tanA vanishes. In terms of the inner variables
[cf. Eq. (2.2)] the above equation can be written as

ﬂ[Kn¢ﬂ'—¢.] + ¢§¢3Z®€¢‘A*-~ 2.4

with the remainder being comparable to e’ . Thus
the 3-D compressibility correction appears as a
correction to the Von Karmsén equation{40) and the
reason for introducing the reduced sweep angie

s A/ «<V is made apparent. A pressure
coefficient may be computed from the solution as
A
Gr ExBex . scos™n 0”3 - 3.5)
4 LT
8 U

With a remainder comparable to €%, Note that
as long as M = 0(1), i.e. A =0(a®), ¢ is
unaffected by @

We note that in the transonic similarity
parameter defined in Eq. (3.la), the denominator is
taken as the first power of M. s in Murman and
Colel43) aiso Murman and Krupp (45 This choice

gives a definite improvement in the accuracy of the
critical flow speed, hence,the wave pattern near
the sonic boundary. as pointed out in Ref. 1 (b)
and in Ref. 46. One also mav note that most of the
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"cosA " factors appearing in Eqs. (2.2), (3.4) -
(3.7), except that in (1-M2 ) of Ka , can be
replaced by unity because of & = 0(1). However,
its retention in Egs. (2.2) and (3.5) will allow a
greater range of 'he‘gweep angle A for the valid-
ity of the theoryt‘“° .

3.2 Conditions on Wing Surface, Wing Trace and
Shoc

For an impermeable thin wing surface with the
leading and trailing edges in the wing plane de~
scribed by X = 3(7) and X = B(y), respectively, the
ordinate can be written as

0

~ Vo A
2z S[aZ¥R7) v’ Zy) s

rae(-20 1)) (3.6

+* A ~
where £°. Zy, and I are all of unit order, and
the "2 in 2t signifies the two different
distributions for the upper and the lower surfaces.
The functions EL (¥) and I (¥) represent,
respectively, a wing twist and an (upward) wing-
bend; they are introduced to allow control of the
3-p effect. The wing boundary condition can be
transferred to the wing plane (Z = 0) to read

(33)= 2% @z rel, G

where the subscripg;'w"refers to the wing. On
the wing trace at 2 = 0 corresponding to the
vortex sheet, the small-disturbance approximation
gives the requirements that pressure jump and the
normal velocity are zero. In view of Eq. (3.5),
this leads to the condition that the two components
of the velocity perturbation, 3z and $g are
required to be continuous across the wing trace.
Therefore, in solving for the 3-0 correction for
the inner solution,we can treat the problem as be-
ing wakeless. This simplicity follows from the
fact already noted that the spanwise component of
the wake-vorticity is not large enough to warrant
consideration in as much as A is small.

The PDE (3.4) is of a mixed type depending on
Ko and 83 ; the characteristic surface of the
nypertolic region, X = R€(£,¥) is given by(47)
2 Py 2553
K‘-(4¢I}¢:vl‘®’—;: —(—’T). (3-8)

in the limit € -0, we identify the critical speed
‘or the 2-D component flow

A 6.9)
x 7+1/,

The PDE (3.4) admits w~eak solutions with disconti~ ~

tuity surface consistent with the Rankine-Hugoniot
shock relations under the TSD approximation. ' One
of the jump zondition is of the same form as :he
znaracteristic equation (3.8), with X%7) there re-
placed 2y X 97 %) ithe superscript "D" refers to
the shock discontinuitv) and $4 replaced by the
ari thmecical mean of g across the shock. The
Jtner candition joverning the shock,corresoonding
20 the continuity of the tangential velocity,can
se simply/ taoker to be zthe continuity of 3.

3.3 Sertursaticn dnalvsis

As seen above, the 3-D correction considered
represents a small peturbation of the basic 2-D

component flow. The anaiysis can be made more sys-

tematic by solving for the coefficients in the
asymptotic expansion for small ¢ :

I ~

$=8red - (3.10a)

with a corresponding expansion for the unknown
shock boundary

£=2 808.7)relN(88) ¢ (3.700)

20
where a weak logarithmic dependence ofé‘,ud x,ongls

~expected (in view of the nature of the upwash ex-

amined in §2). The resulting equation of particular
interest is POE governing

PR % I A 1 3 o143
(- 8] Foo Jpe - B e} 6

= 20485 (.
The nonhomogeneous term on the right results from
the 3-0 compressibility correction, it confirms the
remark given earlier (§2) that the upwash correc-
tion alone does not give the complete answer to the
3-D potential problem.

""" As in most standard perturbation analysis invol-

ving shock waves, thg_iumgﬂconditions are ana-

_lytically transferred from X=%032:9) to the-gé:'

“perturbed boundary X = x 3(2,¥) where the resulting

perturbed
condition for B,and XP read

fo X4 A DA
2083 - nC 8 v g
= .223%" 2%
2 9£ » 3.122)
A -4
[[4?, . £ é:dl: ) (3.12b)

where{ D and[[ JJstands for the arithmetical mean
and the difference across the discontinuity surface,
respectively.

3.4 The Far Fleld of the Inner Solution

At a point sufficiently far from the wing sec-
tion, the solutions §, and &, admits a behavior,
apparent from the governing PDE,

A
:’5‘ ~;”’:; [‘tan’%) + Zsgn "]+-.- (3.13a)

A a
z 4 A - A T
B2z S tnig) - ERE LR
where ;.‘ Y s (3.12;

As well known, the behavior shown in (3.13a) repre-
sents a concentrated vortex with 3 circulation
equal to the potential jump at the trailing edge.
The leading term in Eq. (3.13b) ‘s simply the con-
tribution of =16 "Q.g.'-on the RHS Eq. (3.11), using
Eg. (3.13a). The next two terms in Eq. (3.13b) are
simply the two components of the induced velocity
to be determined by matching with the outer solu~
tion.

The remainder of (...) in (3.13a) is zompar-
able in magnitude to the doublet, i.e. to &1,
including terms proportional to ,ff":.’afl/fgyl and
#23/1814 | 33 is quite well known from the 2-9
TSD analyses. The remainder (...) ‘or @, in (3.13))
is comparable to unitv, (t0 e more orecise, 0
(Z-\é!)z, lntgt and wnity), including terms

e p———— --rpmy‘-;‘—rv :




3.6 Matching with Quter Solution

oroporticna! to .'T;‘ as wel! as the doublet strengtn
in the far-fielc of fg. It must be pointed out
that tnese remainders are not essentia for formu-
lating the reduced problems for 'ao and 8y, but its
yse at the far boundary in a ngTerical computation
proves to be very helpful(Uv' .

3.5 A Line-Source Effect

Amona the iogarithmic terms mentioned is a _
{pure) line-source term G@zm 'In1#l ts existance
could have been anticipatea from the appearance of
the source-like 3-D compressibility correction on
the RHS of PDE (3.4) or (3.11). Ref. 14(a) shows
that, for a straight center line, the source strengh
3,{9) can be explicitly computed from one of the
doublet strength belonging to the far-field expres-
sion of fp; the result is also applicable in cases
involving piecewise straight segments.t This and
another term of the order log ]?] are not found
however in Cook's analysis!i8)?

The existence of a nonvanishing Q, can_be
readily demonstrated for cases in which a"oz can be
neglected. Note Eg. (3.11) becomes

¥ ot 2 @ 2* a2
(%{3";;1/ 9' ~ 2?"3—;—’-;% (3.14)

in tne far-field (|g"|-.an). In this case, the area
integra) of the RHS of Eq. {3.14) can be equated to
the total volume flux; therefore,

A . 2& > A A A

Q= JK?' ,(f,'}—,; ¢ didy

2@ lim L3 3 g2 2@ 487 (3.15)

X bl e 9= Al |
where B is the far-field doublet strength of B,
associated with the airfoil thickness. it is thus
seen that the swept or oblique wing will presert a
line-source effect in the outer flow, which must be
taken into account in a third-order theory (in Van
Oyke's sense(27, 37 ), even in the linear case.
This line-source will not affect the lifting part
of the linear problem, of course.

. 0y A A S AT U .
In the inner variables x,y and z, the behavior
of the outer solution near H‘E fenterline, Eq.
(2.6a), can be expressed as'' ‘b

8, ~ TG [ean (5 2) + Fsgn? 1+
@ ! - A !
*eﬂiz—f'%;'_" [tni@]-tn'2] -
- z”!@f’fr ‘:_r} .[tl'l’(l‘ﬂ?,i‘); ’i%‘ﬁj?
Y & Se A
+€(Z+Z%)2 + - (3.16)
where we have omitted ali factors of M,, such as
Ma¥  in tan™ (M2 /K. 2 ) since its errcr can
affect the determination of P, ((§)) at most to the
order o 2/3 or c’,which in turn can influence
the inner solution through the upwash correction to
the order €’ , at the most. The third term on the
RHS of Eq. (3.16) confirm the anticipation that the
spanwise vorticity jump can be neglected, which is

seen to be_proportional to ¢2/35 , hence compar-
adble to 6‘3-

Comparing  £q. (3.16) with the correspondin
far-field behavior of the inner solution (B, +€ @+
-+« ), and noting the slight difference in the
definitions of 3 and B, we: can now, identify_ B
Poy) = HUy)) with cos'/34 Fo(§) = (),
and the induced velocity correction with &+ $¢i:

z
& A
Q.alsodependson f?._

£ o

colgt D )
I c 2@ an ] V7
K Chip) = Z- - pe X dlc

[ C, y) z Z, 7 Ik, 7

With these identifications, the inner and outer sc-
lution shown in Eqs. (3.13) and {3.16) are seen o
match [for all terms snown, exceo: the third (hign-
er-order} term in £g. (3.16)]. Ref. 14 also con-
firms the matching to a higher grder in lél" and €
between (B, +€8,}, and (@o «€8,), in which the
strengths of the line doublet, the vortex, and the
line-source for the outer §, solution are determimd

A With @," and @," now determined in terms of
To(¥), it is assumed that the inner solutions for
o and B,, wnich fulfill the Xutta condition and
are continuous everywhere except across the wing
and in the wing trace (x >3, £ = £ 0), are uniquely
aetermined by their PDE's, together with their re-
spective conditions on the wing and on the wing trae
and the far-field conditions Eq.(3.13).

The problem of swept wing is thus reduced to
solving first a strictly 2-D system involving the
noniinear TSD Eq. (3.4) for @y with its rignt-hand
member omitted, and therein replaced by ﬁb. and
next, solving another 2-D (linear) PDE, system with
the PDE (3.11) for the 3-D correction §, . The
spanwise variable y appears in the two (uncoupled’
PDE system oniy as a parameter through the wing and
the far boundary conditions. The soiutions at eacn
span station can be determined independently of an-
ogher, except for the spanwise distribution of

To(¥) and § 2 5 » which can be obtained aftar
o has been determined from an adequate numoer of
span stations

Pl
3.7 Superposition of Similarity Solutions For 8,

- Owing to the linearity, the 3-D correcticn to
#, can be decomposed into separate parts. There is
an important class of wing surface gecmetrv, for
which each of these separate parts (after Heing
suitably scaled), has similarity solutjons indepen-
dent of §, as does the basic solution B,. Thus,
the reduced 2-D equation system in this case can ce
solved once for Ell'span stations. [This interes: -~
ing solution stucture does not agpear to be recog-
nized by Cook in her analysis{18).]

This wing class requires that the wing section
at each span station be generated from a single
airfoil profile, but the local chord c(y) may vary:
local twist and/or wing bend for compensating the
3-D effect are aiso allowed, as in £q. (3.6). This
geometry can be more specifically written as

A o4 % B & A
2:2{«lHZ(F) v« Z,(3) v «e@4) 1657)]

3.1
where 2(§) = c(y)/cg. Implicit in Eq. (3.18? ig)
that the center-line X = 2 = 0 is the common
straight axis for the similar wing sections at dif-
ferent span stations; the percentage-chord location
of this straight axis can be arbitrarily chosen,
however .,

To describe the F\gw structure in question, we
shall rescale @, x and 2 by the local chord civ),
and introduce the variables

>

A

A A AA
X=R2 F2if, Treesty, 62987 a9

The similarity flow structure admissible under Eg.
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(3.18), with due ailowance for the upwash correc-
tions, is represented by

$= 5;(;?":) - 6@3'6; 5Z) - ‘J?..@'

+&[/R Et5) + Tt5) '@z'm] OeT))
(3. 20a)

where &= 4é/43, and By, g, and #2 are independent
of ¥. The corresponding shock geometry, when an
imbedded supercritical fiow region appears, takes
on a similar form

¥=x 7. e@ETNE) +

v € [K €51 - T9)+ ©2Z47] 1o
20b)
The third term of Eq. (3.20a) is introduced sc(!sthat
the upwash effect is transferred through the solu-
tion a'z to the wing surface as part of the inci-
dence correction to , whereas the second term
€@ 8’9, accounts for the 3-D compressibility
correction to the PDE without altering the wing
boundary condition.

The POE for 3, is the same as that for io with
Z'ald Z replacing X and 2; the linear PDE governing
3, obtained from Eq (3. H) is

{[ka-aengz] £+ 5, -omB ] 8

at' o

=-2(52+55) Pz (3.0

where the right-hand member results because
309'3’0" and ¥z secaVos -(€" 1785 3? The
32 satisfies the homogeneous pagt Eq (3.21).

On the wmg portlon of the x-axis (ztto),

28 /95 2425z, 39 /52 2 0 ,and 3K/3% =

The jump conditions for a shock, if it exists,

must be derived from Eqs. (3.12), not from the _
jump conditions for the weak solutions to Eq.
(3.21). _since @, co., and &, 2e@88°8, -eX. T 22
+eLJ;¢.f,‘ +I+® Z2] ¢ $2, the conditions in
question can be deduced from Eq. (3.12), to be
applied at the unperturbed shock boundary x = xo (z)

We give below the conditions for 3’.

A 8y + W08

TR = 2%, 32200

(& «5°4,4] =o.

The far-field aehavior of 3'0. 3 and a:; zan be de-
veloped “rom their governing PDE§and will be given
Jelow more fully than Eq. (3.13), inasmuch as they
are explicitly used on the far boundary in the

comoutation ~ork discussed in §5 Here, for large

§ln ri/Ka X ,

(3.22b)

&~ z.l‘r.r 6 « (D% -DimE)IE?
.1t (glrz[in.’é'f - o D] Y (3.239)
3
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where § = tan” (F//K. 2 Z)rFsanE. These results are
completely recoverable from the corresponding re-
sults for ﬂo and B in the more general case, after
observing ;?:)‘ eF, pL=2'P., D 5"3; 21,
(194) {6 Ko = o YA X afe.
-Psotg |n)p(f'|:t/?cu’i:f that.auﬁeﬁ 5"’9"‘ (‘/ 3.13b)%
the upwash contribution /K. £ £ apmrs in

neither #, nor %, and that & %, 05, 5%,
etc. are pure constants.

K<Y
¢
il

(3.23¢)

The upwash effect now appears as an incidence

. correction JS-.. & in the reduced problem and is

determined from

R& = me- 28 eue v

with /XA @', evaluated from Eq. (3.17). The
source strength can be determined with the help of
Green's Theorem; for the system with similarity
structure considered, Q. can be expiicitly evaluawd
from z

A 417 v <+ ~ a~

Q|= —K_.;D° ’BﬂK’ [31-04‘(300)’]
where 3 and B are the leading and trailing edge lo~
cations in X, respectively.

3 ] An Unsteady Analogy

For wings with sections profile not being gen-
erated from a single shape, the greatly simplified
solution procedure based on the similarity struc-
ture discussed in § 3.7 is not applicable. An un-
steady analogy exists, however, which provides an
alternative,and perhaps numerically more effective,
solution procedure for the inner probiem in the
more general case.

Let

F27/e¢@, p2 2reRCE, 13-25p)

the POE (3.4) then appears as

2=t ) e 9g = 28 (3.26)

This is a familiar form in the analysis of unsteady
transonic small-disturbance flow in the nonlinear
cegime 48, ‘09). The wing boundary condition Eqg.
(3.7) now reads

2 A
2P\ . 2Z* 42 A AL .
() 3Bt oo

to be applied at 2z =20, (€Y R < 5¢8)).
Thus, an analogy of the inner probiem for 3 with an
unsteady 2-D transonic airfoil prodlem exists, in
which, since €& is small, the unsteady motion is
confined to the neignborhood of the zuasi-steady
limit. The crucial input to such an unsteady prob-
lem is of course, the incidence correction €/Ka*
<Lty which is a functional of Tizéy tne latter
can de replaced by an aoproximate distribution

A p— e 1




_a portion of surface containing the maximum-velo-

ial distribution of F(%).

from a solution of Eq. (3.26),with /K. €5 set

equal to zero in Eq. (3.27). With the AD) algorithm
(k9), this approach promises an effective compu-

tational procedure, especiaily in capturing shocks

and in avoiding the ambiguity associated with the

reexpansion singularity at the shock root as well

as t:e problem with a very weak shack (discussed in

3.

Numerical results have been obtained for
oblique wings via this approach in an unpub!ished
work by T. Evans and the senior author, and compare.
reasonably weil with those obtained from the local-
similarity solutions. Some of Evans' nonlifting
examples nave been discussed in Ref. 14 (b).

4. LIMITATIONS AND COMMENTS ON THE THEORY

The asymptotic nature of the analysis not only
restricts the application mainly to high~aspect-
ratio wings, but also lead to a number of nonunifor
mities, i.e. regions of local breakdowns, which
limit considerably the usefulness of the theory.
There has also been questions raised on the unique-
ness and existence of solutions to the reduced
problems. Comments on these and other questions
are given beiow.

4.1 The Uniqueness Problem and Shock-Free Super-

critical Airfoil - - - = ..

The existence and uniqueness of the reduced
probiem foi Bo 8 gf course, ihe same in the 2-D
TS0 theory 4o, 5 ) For the unigueness of the
3-D correction ¢¢ the problem may be considered
peing equivalent to asking whether the homogeneous
part of PDE {3.4) has a solution § o, with
/33,/,,) = 0. It is essential to point out that
the swept and unswept wings, as wel! as the 2-D
airfoil, share the same uniqueness
problem mentioned, since the 3-D influence enters
only as a nonhomogeneous term in their equations.
Thus the uniqueness proof given by Cook 16y for the
lifting-1ine theory of the straight, unyawed wings
in transonic flow should gliso be applicable to the
swept-wing case. [The idea in Cook's proof runs
parallel to Morawetz's eariier work on 2-D mixed-
flow in the hodograph plane{52), but differs from
Morawetz's in the use of the physical plane and in
allowing circulation.]

Two important questions arise concerning the
analysis in which represents a shock~free super-
critical (compgnent] flow: (i) can a shock- free
perturbation €0, exist? (ii) How should the shock
be treated in an asymptotic theory for small € in
this case, if gl. is not shock-free? Definitive
answers to these questions are not avm!?gle to
date. In fact, the proof given by Cook aims
chiefly at proving uniqueness for the perturbation
of a shock-free supercritical solution @y, with the
nmp%lcnt assumption that the perturbation solution

ml existy,

* One must recall that the significance of
Morawetz's original uniqueness study was concerned
with the question of existence (53), where she
found that, to msintain an imbedded shock-free
wpercriti-cui flow, the airfoil profile variation,
say Z =< f(F), cannot be arbitrarily prescribed on

city point, with the exception of certain very spec~

then would amount to the stupulatuon that

"where 3P /s

Cook's implicit assumption _
f(R)=X 1

In passing, we may rerarx zhat, .7 a 2-D
shock-free supercritical profile were tc be used in
the 3-D wing design, the unswept (straiont) wing
appears to posess one advantage, (although there
are other obvious drawbacks) since the nonhomoge-
neous terms of the PDE (3.4) vanisnes in this case,
and the remaining 3-D effect can be eliminatea by a
proper twist distribution

— A
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[0f course, this condition can be useful also to
the oblique and swept wings, since tne contribu-
tion from the other correction, i.e. the 3~D com~
pressibility effect, is relatively small ir magni-
tude in many cases.)

4.2 Breakdown Near the Leading Edge

The breakdown of the asymptotic analysis of
§ 3 can be separated into two categories. One
arises mainly from a smalli-disturbance approxima~
tion which must fail in the vicinity of a stagna-
tion point, or where the X-gradient is singular;
the other category associates more directly with
the hlgh-aspect ratio expansion, in which the span-
wise graduen: is assumed to be small and must fai!
fs singular. The nonuniformity cf
the second’ category will be ‘examined in §&.3.

Stagnation points occur near both leading and
trailing edges, the problem is less serious with a
sharp trailing edge since with the Kutta condition,
the region of this sreakdown is exponentially smail,
as s well known. For an airfoil! with a leading-
edge radius comparable to 2%C, , 2%is proportional

to (£- 3) 2 nesr the leading edge and the TSD
theory\ 5h) gives an infinite (0,] Tike
(x-3)" v 3 The same behavior remains, in fact,

even if the camber, or absolute ‘incidence,is comp-
arable to the thickness(53). The region where
o 8, $o5 becomes comparable with unity is

?-5:0(4‘):0(5‘), (b.2)

indicating that the leading-edge singularitv will
not sffect the usefulness of the theory unti) one
reaches the nose region which is x-a = 0 { 2%),
since T= 0(a ) here.

It may be pointed out that the magnitude of
the drag coefficient contributed by the surface
pressure in 2-D is of the order +~ (of which a
nonvanishing portion is contributed by the singular
pressure coefficient near the nose region), while
the stagnation region at the nose contributes tc 2
smaller leading-edge force comparable to =*, i.e.

«® . The latter is exactly an order g higher
than %) and, therefore, is essential if the 3-D
effect on the transonic drag rise is to be consis-
tently analyzed. For this reason,a development of
the iifting=iine theory on the basns of the ocoten-
“Ttial eawmtion without the smzsl-dnsturbance assumpticon
appear to be worthwhnle Additional reasons
favoring the use of a full potential equation are
given later in §5.

4.3 Nonuniformity Near a Shock Root

For flow with an imoeooed supercritical

| o
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region terminating by a shock, the reexpanding suo~
sonic flow develops a weak singularity at the shock
root (the intersection of the shock and an imper-
meable surface), unless Eh; surface has a zero cur-
vature, as is well known(5 Yo on particular, the
fluid tangential velocity behaves as

A A

(&-4,/180 ~op[£ln(®/x)-i8] (4.30)

A
wherofzi?.: , the subscript ' g ' refers to the
shock root and 3§+ 7;§ and » are rescaled
coordinates with the origin at the shock root:
Ay
el
5= zu’-(?)

Vi, oA
laausrl (X "sr)} (4.
72 2;:|E£ﬂ,,|-'~ 2

-

a A

In above Z* s ¥Z/aR* is proportional to the sur-
face curvature and x, is 3 constant det:rmined‘by
the surrounding flow. [t follows that des = 9§/
becomes infinity at the shock root (£s0) like laigl,
leading to a logarithmically infinite shock jump

far € 28,/9% at the shock root, (cf. Eq. (3.12a)).
Although, one may argue that this rather weak sin-
gularity would affect little the lift, moment as
well as drag, the failure to yield a correct (fin-
ite) pressure jump at the surface appears to have
defeated one of the original purposes for analysing
the shock perturbatian.

. However, this local breakdowr. can be treated
(1bb), once if it is realized that the form of the
reexpansion singularity in & (not in @) given in
€q. (4.3) is unaffected by the presence of the 3-0
compressibility correction a@e€ 25 in the composite
PDE (3.4). Thus any 3-D (or the analogous unsteady)
influence on the local stricture of the 8¢, or pres-
sure field,can result only through changes in the

three constants {2J,, , X5, 3nd x,. In face,
oy expanding W, Ry and w, in small € for fixed

% and 2 (appropriate at points far from the shock
rmot), one recovers from €q. (4.3a) the logarithmic
singuiarity in the >revious expansion. Furthgg_vpgg.
satching this with the singular solution to ¢ =
P, + €3, +-permits the determination of the correc
ced values for the shock jump and for the shock-roc
location.

Implicit in the formulation involving shocks

' §3 is that €08 20 is small relative to

T #ell - This condition is not realized where
the shock strength approaches zero. At least for
colutions constructed from the similarity structure
7 §3.7), in which the shock jump is controiled ex-
plicitly by ¢d@/d5 , (weak) unrealistic expansion
snock may appear from such an analysis (if the 2-D
solution for the component flow has a weak shock).
However, the inner solutions based on the composite
PDE (3.4), or on PDE {3.26) for the unsteady an-
alogy, will not encounter this difficulty. Compar-~
ison of the similarity solution with that based on

:ne unsteady analogy for the case involving weak
snocks is therefore valuable.

4.4 Nonuniformities at Wing Tips and at the Apex

As made apoarent in § 2.3, the analysis given
in §§ I ana 3, ~ithout furzner refinement, will
Sreaxdown at 3 Jistance

F2120 (elng) .

from the tips, and at a distance

y = Oce) (4.95)

from the apex of 3 sweot wing. Implicit in E3.
(4.4) is the assumption that the span load computed
from Jo (i.e. from the strip theory) vanishes at
the tip like an elliptic load (cf. Fig. 6a). For
an untwisted tapered wing, or one with a square tip
(cf. Fig.s 6b and 6c), we infer that, instead of
Eq. (4.4), the nonuniformity in this case occurs at

This follows from the last integral of Ea. (2.6c),
which, when interpreted in Stieltjes' sense, gives
the additional terms (for 7 -»0)

W . ol- .
—’._’. [l -SmA(I)_] + ___r':i"_) [; +$mA(-')1 (%.7)

A comparison of the present solutions with
more exact numerical analyses for the cases in-
volving untwisted tapered swept (or oblique) wings
and for the swept wings with an apex, should be
heipful in assessing the extent to which these non-
uniformities affect the usefulness of the analysis.

it may be pointed out that the flow field
next to the apex must, in any gractical situation,
be modified by the presence of a (siender) fuse~
lage; therefore, the solution breakdown near y = 0
should not be a serious practical concern, and may
presumably be separately treated. The relatively
small scaie in y or (y¢!) indicated by Eq. (4.4) -
(4.6) suggests that the equation governing the
regions arounc the apex and the tips to b: re-
analyzed is the 3~D TSC aquation (noting that
634’ G/2b ). These extensions remsin to
be investigated.

S. COMPUTATICNS: EXAMPLES AND COMPARISIONS

WiTH FULL POTENTIAL SOLUTIONS

Inasmuch as the existence and uniqueness of
the solutions cannot be easily investigated, dem-
onstration of numerical_solutions to the reduced
problem is an essential part of the study. The
theory has been iimited by the assumptions of a
high-aspec:z-ratio and of the small disturbance; it
is uncerzain that the analysis may predict the
aerodynamic characteristics for swept wings to the
same degree enjoyed by the lifting-iine theory for
the straight unyawed wings. In view of chis, and
the several nonuniformities of the analysis dis-
cussed in the preceding section, we consider the
direction comparison with the more exact, 3-0 full
potential solution an integral part of this research
Before going on to the discussion of the computa-
tions, some remarks will be made on the basis of the
more exact potential-flow computation programs which
are involved in tne comoarison study.

5.1

Remarks on Existing 3-D Potential Computer
Code

—

The unrefined nature of the “ar-field descrio-

ticn in nost discretizead “low-field computation
nethods, 2s a result of the computer storage and




computation time limitations,
oroolem becomes more serious in the 3-D cases |

(20-24) .

a;glltgle

Rl R

lowed.

is well known.

This

it is not at all clear from the published
data whether the grid distributions used therein
are sufficiently refined for the purpose of de~
scribing adequately the upwash induced by the far-
wake vorticities,which has been so0 crucial to the
anaiysis of a high-aspect-ratio wing.

There appears to be an additional problem
brought about by the scarcity of the span stations
in the current 3-0 transonic program
ta the FLO 22 code for planar wings
a total of twenty-one (21) span stations are al-
Applying it to an oblique wing, for example,

(22)

there remains only ten_(10) stations on each wing
pane!, and one certainly cannot attach too much

region in this case.

confidence to the results obtained for the tip

It has also been known among

users that the span load and sectional 1ift co-

efficient so obtained are far from being very

smooth=-the values at successive stations appears

to alternate noticeably about some mean curve.
Fig. 7 shows typical results of sectional 1ift co-

efficient obtained from the converged solutions

generated from two verScons of the FLO 22 code for
"an e} TTptic wing pivoted & 307 at M

= 0.755.

Except

for this limited, but noticeable, irregularity in

the transonic-spoad range which require some
caution in making a comparison with the asymptotic
the method is known to be capable of
reproducing the span loads determined by the
(linear& pane! methods for the subsonic speed

analysis

range

Presumably, this irregularity has not been
observed in the 3-D computations using the tran-

sonic small-disturbance equation
out however that the current 3-D TSD codes are not
_applicable directly to problems lacking a bi-lateral
symmetry such as that of an oblique wing.
_the small-disturpance assumction breaks

_more, .

We may point

Futher=_

down near the leading edge, comparison with 7SO
code will not revesl cne of the imoortant {imicta-

tions of the present {transonic) theory.

For the

two above reasons, comparison with the TSD codes

has not been made.

shock-wave patterns.

From a strict theoretical view point, the most

We believe such a comparison
can be quite useful in our future study focusing on

serious limitations of current 3-0 full-potential

codes is the empiricism introduced by modeiling the
inviscid wake in the formulation, which we believe
Two assumptions were introduced
the siiape of the trailing
riori; (ii) a

is unnecessary.
in Refs. 21~2k: (1)

vortex (TV) sheet is specified &

condition equivalent to (in the present notations)

¢Lz" °

is app!ncd at the TV sheet.
foil section, sssumption (i)

{5.1)

Assuming a thin air-
is sesn to be equiva-

Jent to that in the TSD theory, with the TV sheet

transferred to the ''wing trace' on the x-axis.

Ty T
22-24

condition (ii) Is incorrect
and requires a clarification

. Were Eg.
to hoid on both sides of the sheet, Refs.

The

would imply that the PDE at far-downstream should
yield (in the present notations)

—————————

This controversial condition was brought to my

attention by Or.

Norman D. Malmuth.

H‘{:O or ¢;=¢; 5.3

that is, the upwash is continuous across the sneec
or the trace. This and the continuity of @,

are then the correct TV-sneef condition, wnish is a:
least consistent with the small-disturbance theory.
On the other hand, the programs sSimilar to those in
Refs. 22-24 do lead to resuits consistent wiin ex-
perimental data. This can be reconciled by tne
observation that if we were to stipulate the in-
correct assumpiion of continuity in @ge ., then £q.
(5.3) would become consistent with =0. It is
apparent that in the difference equations of Ref.
22-24, Eq. (5.3), but not Eq. (5.1), was actually
used. We may conclude that whil.&.- 0 sppears to
be erronecus, the code actually uses the more
appropriate condition Eq. (5.3), and that the wake~
modelling in Ref, 21-24 introduces an error com-
parable to that in the small-disturbancs theory.

5.2 Computations of 3'.. 4, and ﬂ

The reduced mixed=type problems for the 3;,

® ,and 9; in the similarity solutions { § 3.7)
are solved numerically by a relaxation methoc, using
type-sensitive difference operators corresoarding to
Murman's "fully conservative form'(50). The pro-
cedure of line relaxation used for §, may be
considered standard, except for the uses of an im~
proved far-field description with Eq. {(3.23a)* ang
of a third-order convergence acceleration scheme!
Shock fitting aigorithm is being used in con-
junction with the shock perturbation analysis based
on £q. (3.22) for ¢, , and simiiar treatment for &,
but will not be discussed here, inasmucn as the
cases with subcritical, and slightly supersritical,
component flow studied below in § 5.3 are shock-
free.

For 6,' » and 3', , the probiems are linear
and the transition and/or shock=jump boundaries are
known from the @, solution, but tney reauire a
greater storage owing to the variable coefficients.
A nonuniform mesh with 81 x &1 grid points over a
computation domain l?l £ 6,11 £ 6, were used bv
Cheng and Meng(13,14)( oF is unyform over the wing
section). A subsequent program employs three
successive grid-halvings up to a mesh of 124 x %2
{with nonuniforma® on the wing). The leading and
trailing edges are located at X » -1 and X = +I,
respectively (i.e. - 3 = % = 1); a departure of T"
from negative one can be accounted for by changing
all X to (X+ 1 + a) in the equations governing the
similarity solutions. The case -3 = 8§ = | cor-
responds to a swept, or obligue, wing with the
straight axis X = 0 coinciding with the 50x chore
iine.

The iterative solutions in Refs. 13 and 14 ses
uses a relaxation factor of 1.8 and 0.8 in the
elliptic and hyperbolic region, respectively; 200-
300 sweeps are needeg for convergence of the circu-
lation to within 105, 0On an 18M 3031, using
double-precision arithmetics, the convergenced
solution for each @, requires typically 10-12
minutes ™ wWe note in passing that a computer

* o 2-5% change in surface pressure results from

the improvement in the far-field description
based on Eg. (3.23a).

# The I1BM 3031 at tne University of Southern
California Camous has an expandabie core memory
of 300-6400 X words.




program similar to that for ﬁ has been considered
in th? §?ntut of a straight unvawed wing by
smat1017),

5.3 Examples: Comparison with Solutions Based

on the Full-Potential PDE

For the expressed purpose of comparing the
asymptotic analysis (the similarity-solution
structure in particular) with the corresponding
full-potential solutions, we consider below exam=
ples of oblique as we!l as symmetric swept wings
with high subcritical and slightly supercritical
component flows. All wing planforms considered
are elliptic, with the major axis coinciding with
the mid (50%) chord; the wing sections are gener-
ated from a single profile NASA 3612-02, b0,
rescaled to an arbitrary thickness . The latter
~ill be set equal to of in the theory. Thess wings
fulfill the geometrical description of £q. (3.18)
and,therefore, the inner solution can be obtained
by a !inur‘cmlbinltion of the basic similarity
solutions @,, 9 , and , which will be de-
termined after specifying the component transonic
parameters K, ,the incidencs,and the locations of
the leading and trailing edges. We pointed out
that the airfoil profile considered has been used
in various wind tunnels and pre!liminary dozlgn
studies of oblique wings at M = 0.60 - 1.4(4,62),
Several sets of these basic similarity solutions
have been obtained fqr K» = 3.6 and K, = 3.45,
and have been described in some detail in Refs. 13
and 4. Thess solutions are used in the subse-
quent comparison with the full potential salutions.

To illustrate the solutions’ Rehavior, we
show the surface distributions of @55, 7,2, and
8,7 in Fig. 8, for zero incidence gnd Kn = 3.45.
Tﬁe basic component flow, for the d,g shown in Fig.
3 is siightly supercritical. The criticsl condi-
~ion for the 2-D component in this case is
oX = 0/ (7+ 1) = 1.438.

Numerical results comparable with our solu-
tions are generated from one version of A.
Jamescn's 3-D ful!~potential computer codes
UFLO 22 (See Refs., 6,21), which is used with im=
plementations for oblique-wing analyses at NASA
Ames Research Center Aeronautics Division and at
Grumman Aerospace Corporation Research Departiment.
The algorithms employed in FLO 22 are not fully
conservative, but this may not be essential for
shock=free solutions presented below. We point
out that the FLO 22 data from NASA Ames and from
Grumman are not identical, owing mainly to the use
of different meshes. The availapility of data .
from two sources is helpful in delineating the _
nature of discreoancy between our theory and the ~
more exact 3-D programs as noted in §5.1. Data
from the latter is still influenced by the mesh
size, spacing of the span stations, number of it-
erations, the detail of the leading-edge geometry
description, which are different in the NASA Ames
and the Grumman calculations.

A number of FLO 22 runs have been made for the
sbiique ~ings with free-stream Mach number, swept
angle, wing=thickness, etc. chosen to give either
<n = 3.6 or K, = 3.45 employing the same basic
airfoil section. An ellinotic planform is used in
sach case: ~ing twist and wing bend are assumed o
Je zers, as noted earlier. Among the first com=
sarison studies made is a case ~ith relatively
thin wing sec2ion (63 thickness ratio) and a rath-
ar nign ascect ratio {an elliotic olanform with a

major-to-minor axes ratio of 20). The surfacepres-
sure coefficients in this case nave been presented
in the journal paper (Ref. lks), we consolidated
them here in a single plot (Fig. 9) in order to
show differences from the subsequent comparisons
involving considerably thicker wing sections and
larger sweep angles. The fres-stream Mach number
and the sweep angle used in the FLO 22 calculation
is Mg= 0.8242 and A= 22.5 , giving a component
Mach number M_ = 0.7615. Thus, we have K, = 31.60,
©= 1.003 and @ = 0.1277 in this case: the com-
ponent flow is slightly below being critical. The
FLO 22 data from MASA Ames (in =mall crosses and
"v') and from Grusmen (in small open circles) shown
in the plot aeppear to be rather close except next
to the leading edge. The Cp values computed from
the similarity solution (shown in solid curves)
agree reasonably well with the FLO 22 data except
near the leading edge, as anticipated.

Encouraging is that the degres of agreement
with the FLO 22 dats does rot appear to deterio-
rate much with increasing the wing thickness, or
reducing the wing sspect ratio. The consolidated
plot in Fig. 10 shows the surface pressure coeffl -
cient_ at seven span stations on a 123 thick, 14:1
elliptic wing, pivoted at A = 30 for Mg= 0.7677.
The component Mach number is M, = 0.6648 in this
case, giving Ky = 3.45. The thres sets of surface
data of Fig. § are used to construct the Cp distri-
butions shown in heavy solid curves. The Cp value
for the component flow is ~0.689 in this case and
both solutions give the appearance of supercritical
shock~free regions on the upper surface of the downr
stream wing panel.’

The agrsement between the FLO 22 data and those
based on the asymptotic analysis in both Figs. 9
and 10, should be considered as being better than
expected, inasmuch as the rslative error in the
asymototic theory belongs to an order determined by

€ or €%, which ever is larger. The magnitudes
of %) for the examples shown in Fig. 9 and Fig.
10, are, respectively, "= 0.153 and 0.263. It
may be recallied thst there is a noticeable differ-
ence between the two sets of FLO 22 data shown in
Fig. 7. The agreemsnt found here sppears to add
credence to the Ames data set in this case.

Tt s not sitogether clear that the ancourag

ing agreement found for the pivoted wings may
still hoid to some degree with the presence of an
apex in a symmetric swept wing. Figure 11 presents
a consolidated plot for surface pressure coeffi -
cient at seven span stations on a symmetric swept
wing with the same basic (elliptic) planform,sweep
angle,and section profile as those in the preceding
ing figure. The free-stream Mach number is howevaer,
lower with Mgg = 0.7549; thus, M, = 0.6538,
A 37607 ¢t 448 ang @ ~ ) .062.- TrE SolutTon™ °
remains subcritical for most stations, component-
wiser—Theytartons ¢ 0792 and U7 “are ine uded ™

*In both the asymptotic analysis and the FLO 22 cal
cutatton,the wWing SECTTONS IrE taken o Se persen-
dicular to the straight axis, tlierefore, the sec-
tional! cuts shown in Fig.10 are grachizally incor-
rect., The differences rasulting from changing the
orientation of the cuts turns out to be numerically
small, however.
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-~ the full-potential results is encouraging.

to illustrate the manner in wnich the soliutions be~
nave near the tip, wnere the trends of departure of
the ssymptotic from the FLO 22 analyses, as well as
between the two sets of FLO 22 data themselves, are
cleariy evident. Away from the tip, agreement is
43 reasonadie as in the two preceding comparisons
for the oblique wings. However, the set of FLO 22
aata in filled circies (black dots) gives a consis
tently higher pmak for -Cp than the one in open cir-
cles. The discrepancy may be explained by the un-
certainty associated with the fluctuating spanwise
distributions of sectional )ift shown in Fig. 7.
The asymptotic analysis tends to give a consistently
lower ~Cp than the FLO 22 data on the lower surface
around the quarter chord. This tendency is also
apparent from Fig. 10. This small but noticesble
aiscrepancy may be associated with the accurscy and
degree of convergence in thg T, solution. Results
obtained most recently for gcud on & more re-
fined mesh and with a small residus appears to
alter the Cp values on the lower surface slightly
in the rignt direction.

The most important piece of information from
Fig Il is the comparison made for the station
closest to the spex. At 105 semi-span from the
sysmetry plane (7 = 0.097), the sgreement of the
asymptotic results with the FLO 22 data (in open
circles) remain as good as other statioms. Even
for the FLO 22 dats belonging to the second set
(black dots), the agresment with_the results is
on the similarity solution is still reasonable.

6. CONCLUDING REMARKS

The foregoing presentation hes shown that
Prandt]'s lifting~line ides, originally applied to

an unyswed, straight wing of high aspect ratlo, can™

be extended to the study of 3-0 mined flows over
transonic swept wings. Examples of oblique
(pivoted) and symmetric swept wings involving high
subcritical and supercritical component flows are
shown; comperisons with full-potential solutions
from existing codes ars msde. Except near the wing
tip and the wing root, and also the leading edge,
whare breskdowns are sxpected; the agreement with

- =i

A salient festure brought out by the asymptot-
ic analysis is a contribution to the upwash correc~
tion proportions! to ¢ln 6 @ 4747, resuiting from
the spanwise (y'~) component of the locally shedded
wake vorticities, sven though the latter's effect
on the other velocity component is relatively
small (in the transonic regime considered). The
dependence of the upwash correction on the swesep
and on the span loading have been shown; the expli-
cit result presented in § 2.1 should be quite use~-
ful for controlling the 3-0 effects on the transon-
ic component fiow in design studies. Another es-
sential ingredient of the snalysis, sbsent in the
classical theory, is a source-!ike compressibility
corraction to the PDE of the component flow; it
leads to a )ine=source effect in the outer flow.

An important gain in the theoretical develop-
mant through this approach is the availability of
» similttude in the 3-0 flow structure ( §3.7),
spplicable to wings with sections generated from »
single profile. With the similarity solutions,
the reduced 2-0 problems can be sclved once for
all spen stations; the explicit dependence of the
flow field on wing sweep, aspect ratio, and span-
wise distribution of the local chord, as wel! as
twist and pend, cen be studied.

The examples analyzed tnus far do not include
cases with impedded shocks. Solutions making use
of the 3-D corrections for the shock jump and the
shock geomectry (§§3.3 and 3.7) and of the treat-
ment of the re-expansion nonuniformity (f4.3),
remain to be demonstrated. In 2his paper, we nave
not discussed the computations! stucy based on tnhe
unsteady snalogy ( §3.8), yet to be completed. Un-
published results computed from this analvogy with
an ADI algorithm by Evans compare rather closely
with similarity solutions and promise an effective
procedure for treating complicated shock patterns.

Whersas & localized treatment of the leading-
edge breskdown is possible, a8 solution to this
difficulty is to develop a lifting-line theory on
the basis of the potentidl theory w~ithout the smallk
disturbance assumption. A work along this line has
already been carried out in Ref. 58, where, inter-
estingly, solutions via similarity flow structure
may again be found. As noted earlier, in (§2.1.
the inner solution in such a formulation shouio
provide a proper treatment of the vortex-sheet
geometry near the trailing edge, unaccounted for in
most (if not all) current 3-D computer codes.
Treatment of nonuniformities at the root and the
tip sides are the remaining oroblems for the lift-
ing=line theory; their analyses for the transonic
regime, as observed in { §4.4} ,wouid involve solv-
ing a fuller 3-D probiem.
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FIGURE CAPTIONS

Fig. | The bound and trailing vortex system illus-
strated for (a) a pivoted (oolique)
straight wing, (b)  swept wingfwith

straight center-line segments, and (c)
_ Swept wings with curved center line.

s




Fig. 2

Fig. 3

Fig. &

" Fig. §

Fig. &

Fig. 7

fig. 8

Fig. 9

The Cartesian and the orthogonal! curvillin-
ear coordinates illustrated for the wing
plane. The § and g‘ordinates are normsl
to the wing plane.

i1luscration of a spanwiss component of the
trailing vorticity which induces to a log~
arithmically infinite upwash.

hy upwash function I 11lustrated for
= §.39 at three ysw angles for an eilip
tic and an extended-span distribucion in n

The upwash function Ze Z& 111ustrated for
elliptically lasded swept-forward and
swept-back wings of R, = h ac N =
0.755. Refar to text for conversion to
other aspect ratio and Mach numbers.

Sketches Illustrating different types of
wing tip geometry: (a) elliptic or para~
bolic type, (b) tapered swept-wing
{standard) (c) tapered swept wing.

Spanwise Distribution of sectional |ift
coafficient computed for an oblique wing
by solutions to the ful! potential equa~
tion (FLO 22) from two sources.

Similarity solutions for T gz, ﬁg. and rz,‘{
on the upper-and lower surfaces of an
oblique wing at iy = 3.45. The straight
axis is located at the mid chord; the air-
foil section (s generated from NASA 3612~
02,40 rescaled to an arbitrary thickness;
the section is set at zero incldence, with
out twist and without wing bend.

A consolidated plot showing surface Cp on
“three span stations of a high-aspect~ ra-
tio wing pivoted at 22.5%, at Flight
mach number 0.826. The planform is & 20:!
eliipse; the wing section is NASA 3606~
02,40 set at zero incidence, without

twist and without bend.

Fig. 10 A consolidated plot showing surface Cpy on

seven span stations of an oblique wing
pivoted at 30° , at Flight Mach number
0.767. The planform is a ik:] ellipse;
the wing section is NASA 3612-02,40, zero
incidence, zero twist and zero wind dend.

Fig. 1l A consolidated plot snowing surface C, on

seven span stations of a symmetric swept-
pack wing with 30® sweep angle, at Flignt
Mach number of 0.755. The basic planform
is & 14:1 ellipse; the wing saction is
NASA 3612-02,40, zero incidence. zero twist
and no wing dend.
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